Activation of plasminogen by staphylokinase reduces the severity of Staphylococcus aureus systemic infection.

نویسندگان

  • Jakub Kwieciński
  • Elisabet Josefsson
  • Jennifer Mitchell
  • Judy Higgins
  • Mattias Magnusson
  • Timothy Foster
  • Tao Jin
  • Maria Bokarewa
چکیده

BACKGROUND Staphylokinase (SAK) is produced by the majority of Staphylococcus aureus strains. It is an extracellular protein that activates the conversion of human plasminogen (plg) to plasmin. The role played by SAK in staphylococcal infection is unclear. METHODS Wild-type S. aureus strain LS-1, which lacks the ability to produce SAK, was modified by an insertion of the sak gene into its chromosome. The sak gene was integrated in 2 forms--(1) linked to its own promoter and (2) fused to the promoter of the protein A gene--which resulted in the overexpression of SAK. SAK is highly specific for human plg and exhibits almost no activity toward murine plg. To investigate the role played by SAK in a murine infection model, human plg transgenic mice and their wild-type counterparts were inoculated intravenously with congenic S. aureus strains differing in SAK production. RESULTS Human plg transgenic mice inoculated with SAK-expressing strains displayed significantly reduced mortality, less weight loss, and lower bacterial loads in kidneys than did the wild-type mice. No difference in the severity of sepsis was observed between transgenic and wild-type mice infected with a SAK-deficient strain. CONCLUSIONS The results suggest that expression of SAK followed by activation of plg alleviates the course of S. aureus sepsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis.

The increasing prevalence of Staphylococcus aureus strains isolated from hospital- and community-acquired respiratory tract infections is an important public health concern worldwide. The majority of S. aureus strains produce staphylokinase, a plasminogen activator capable of inactivating neutrophil alpha-defensins and of impairing phagocytosis via opsonin degradation. Cathelicidin antimicrobia...

متن کامل

On the mechanism of fibrin-specific plasminogen activation by staphylokinase.

The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antipla...

متن کامل

Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism.

Alpha-defensins are peptides secreted by polymorphonuclear cells and provide antimicrobial protection mediated by disruption of the integrity of bacterial cell walls. Staphylokinase is an exoprotein produced by Staphylococcus aureus, which activates host plasminogen. In this study, we analyzed the impact of interaction between alpha-defensins and staphylokinase on staphylococcal growth. We obse...

متن کامل

Thrombolytic properties of staphylokinase.

We evaluated the properties of recombinant staphylokinase in comparison with those of tissue-type plasminogen activator (t-PA) and streptokinase (SK). The presence of fibrin(ogen) fragment FCB-2 in the reaction mixture increased plasminogen activation by staphylokinase more than 20-fold. Such characteristics are similar to those of t-PA. On the other hand, SK was not affected by the presence of...

متن کامل

Staphylococcus aureus Proteins Sbi and Efb Recruit Human Plasmin to Degrade Complement C3 and C3b

Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 202 7  شماره 

صفحات  -

تاریخ انتشار 2010